- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000100000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Abbas, Houssam (1)
-
Makarova, Alena (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
Ciabattoni, Agata (1)
-
Horty, John (1)
-
vanBerkel, Kees (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
vanBerkel, Kees; Ciabattoni, Agata; Horty, John (Ed.)Markov Decision Processes (MDPs) are the most common model for decision making under uncertainty in the Machine Learning community. An MDP captures nondeterminism, probabilistic uncertainty, and an explicit model of action. A Reinforcement Learning (RL) agent learns to act in an MDP by maximizing a utility function. This paper considers the problem of learning a decision policy that maximizes utility subject to satisfying a constraint expressed in deontic logic. In this setup, the utility captures the agent’s mission - such as going quickly from A to B. The deontic formula represents (ethical, social, situational) constraints on how the agent might achieve its mission by prohibiting classes of behaviors. We use the logic of Expected Act Utilitarianism, a probabilistic stit logic that can be interpreted over controlled MDPs. We develop a variation on policy improvement, and show that it reaches a constrained local maximum of the mission utility. Given that in stit logic, an agent’s duty is derived from value maximization, this can be seen as a way of acting to simultaneously maximize two value functions, one of which is implicit, in a bi-level structure. We illustrate these results with experiments on sample MDPs.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
